Respuesta :

In order to invert a function, switch y and x in the definition, and solve for y again:

[tex]y=2x+1 \mapsto x=2y+1[/tex]

Solving for y, we have

[tex]x=2y+1\iff x-1=2y \iff y=\dfrac{x-1}{2}[/tex]

Answer:

h(x) =  [tex]\frac{1x}{2} -\frac{1}{2}[/tex]

Step-by-step explanation:

Given  :  f(x)= 2x+1​

To find : what is the inverse of the function .

Solution : We have given

f(x)= 2x+1​

To find the inverse of the function :

Step 1: take y = f(x)

y = 2x + 1

Step 2: interchange the x and y

x = 2y +1.

Step 3: Solve for y

On subtracting both sides by 1

x -1 = 2y.

On dividing both sides by 2

y = [tex]\frac{x-1}{2}[/tex].

We can write

y= [tex]\frac{1x}{2} -\frac{1}{2}[/tex]

Step 4 :  take y = inverse of f(x) = h(x)

h(x) =  [tex]\frac{1x}{2} -\frac{1}{2}[/tex]

Therefore, h(x) =  [tex]\frac{1x}{2} -\frac{1}{2}[/tex]