Check the Wronskian determinant:
[tex]W(e^{x/2},xe^{x/2})=\begin{vmatrix}e^{x/2}&xe^{x/2}\\\frac12e^{x/2}&\left(1+\frac x2\right)e^{x/2}\end{vmatrix}=\left(1+\frac x2\right)e^x-\frac x2e^x=e^x\neq0[/tex]
The determinant is not zero, so the solutions are indeed linearly independent.