Respuesta :

Answer:

Step-by-step explanation:

3π/2 is equivalent to 270°.  The "opposite side" for this angle is -2; the adjacent side is 0, and the hypotenuse is 2.

Thus, sin 3π/2 = opp/hyp = -2/2 = -1, and

         cos 3π/2 = adj/hyp = 0/2 = 0.

Answer:

[tex]sin\frac{3\pi}{2}=-1[/tex] and [tex]cos\frac{3\pi}{2}=0[/tex]

Step-by-step explanation:

We are given that a unit circle

We have to find the value of [tex]sin\frac{3\pi}{2}[/tex] and [tex]cos\frac{3\pi}{2}[/tex] by using the unit circle

Radius of  circle=r=1 unit

We know that

[tex]x=r cos\theta[/tex] and [tex]y=r sin\theta[/tex]

We [tex]\theta=\frac{3\pi}{2}[/tex]

Then x=[tex]1\cdot cos\frac{3\pi}{2}[/tex]

[tex]x=cos (2\pi-\frac{\pi}{2})[/tex]

[tex]x=cos \frac{\pi}{2}[/tex]  ([tex]cos(2\pi-\theta)=cos\theta[/tex])

[tex]x=0 (cos\frac{\pi}{2}=0)[/tex]

[tex]y=1\cdot sin\frac{3\pi}{2}[/tex]

[tex]y=sin(2\pi-\frac{\pi}{2})[/tex]

[tex]y=-sin\frac{\pi}{2}[/tex]  ([tex]sin(2\pi-\theta)=-sin\theta[/tex])

[tex]y=-1[/tex]   ([tex]sin\frac{\pi}{2}=1[/tex])

Hence, [tex]sin\frac{3\pi}{2}=-1[/tex] and [tex]cos\frac{3\pi}{2}=0[/tex]