In the United States, birth weights of newborn babies are approximately normally distributed with a mean of ? = 3,500 g and a standard deviation of ? = 500 g.

According to the empirical rule, 68% of all newborn babies in the United States weigh between ____ and ____.

Answer Choices for the first part:
1000g
1500g
2000g
2500g
3000g
Answer Choices for the second part:
4000g
4500g
5000g
5500g
6000g

Respuesta :

Answer:

3000 g & 4000 g

Step-by-step explanation:

Edge 2021

According to the empirical rule, 68% of all newborn babies in the United States weigh between 3000 g and 4000 g.

What is empirical rule?

According to the empirical rule, also known as 68-95-99.7 rule, the percentage of values that lie within an interval with 68%, 95% and 99.7% of the values lies within one, two or three standard deviations of the mean of the distribution.

[tex]P(\mu - \sigma < X < \mu + \sigma) = 68\%\\P(\mu - 2\sigma < X < \mu + 2\sigma) = 95\%\\P(\mu - 3\sigma < X < \mu + 3\sigma) = 99.7\%[/tex]

Here, mean of distribution of X is [tex]\mu[/tex]  and standard deviation from mean of distribution of X is [tex]\sigma[/tex]

In the United States, birth weights of newborn babies are approximately normally distributed with a mean of

[tex]\mu = 3,500\rm \;g[/tex]

The standard deviation of the babies is,

[tex]\sigma = 500 g[/tex]

Put the value in the empirical formula for 68% as,

[tex]P(3500-500 < X < 3500+ 500) = 68\%\\P(3000 < X < 4000) = 68\%[/tex]

Hence, according to the empirical rule, 68% of all newborn babies in the United States weigh between 3000 g and 4000 g.

Learn more about empirical rule here:

https://brainly.com/question/13676793