Respuesta :

Answer:

Vertify is an identity

Sin2x=2cotx(sin^2x)  

starting from the right-hand side

2cotx(sin^2x)

=2(cosx/sinx)(sin^2x)

=2(cosx/sinx)(sin^2x)

=2sinxcosx=sin2x

ans:right-hand side=left-hand side

Step-by-step explanation:

Step-by-step explanation:

sin^2x = 2cotx sin^2x

Rewrite right side as fractions:

sin^2x = [tex]\frac{2}{1}[/tex] * [tex]\frac{cosx}{sinx}[/tex] * [tex]\frac{(sinx)(sinx)}{1}[/tex]

Multiply together [tex]\frac{cosx}{sinx}[/tex] and [tex]\frac{(sinx)(sinx)}{1}[/tex] :

sin^2x = [tex]\frac{2}{1}[/tex] * [tex]\frac{(cosx)(sinx)(sinx)}{sinx}[/tex]

Cancel out sinx on top and bottom:

sin^2x = [tex]\frac{2}{1}[/tex] * [tex]\frac{(sinx)(cosx)}{1}[/tex]

Multiply together 2 and (sinx)(cosx):

sin^2x = 2sinxcosx

Substitute sin^2x in for 2sinxcosx:

sin^2x = sin^2x