Answer:
[tex]\omega_f=0.0356 rev/day[/tex]
Explanation:
Given:
Angular speed [tex]\omega_1=2\ rev/day[/tex]
Radius of the solid sphere = R
Radius of the spherical shell, R' = 5.8R
now the initial moment of inertia i.e the moment of inertia of the solid sphere is given as:
[tex]I_i=\frac{2}{5}MR^2[/tex]
where, M is the mass of the solid sphere
Now, the final moment of inertia i.e the moment of inertia of the spherical shell is given as:
[tex]I_f=\frac{2}{3}MR'^2[/tex]
or
[tex]I_f=\frac{2}{3}M(5.8R)^2[/tex]
or
[tex]I_f=22.426MR^2[/tex]
Now applying the concept of conservation of angular momentum
we get
[tex]I_i\omega_i=I_f\omega_f[/tex]
substituting the values, we get
[tex]\frac{2}{5}MR^2\times 2=22.426\times MR^2\omega_f[/tex]
or
[tex]\omega_f=\frac{\frac{2}{5}\times 2}{22.426}=0.0356 rev/day[/tex]