Find the length of the hypotenuse.

Answer:
6
Step-by-step explanation:
Using the sine ratio in the right triangle
let x = hypotenuse and sin45° = [tex]\frac{\sqrt{2} }{2}[/tex], then
sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{3\sqrt{2} }{x}[/tex]
and
[tex]\frac{3\sqrt{2} }{x}[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex] ( cross- multiply )
[tex]\sqrt{2}[/tex] × x = 6[tex]\sqrt{2}[/tex]
Divide both sides by [tex]\sqrt{2}[/tex]
x = 6