A space probe is orbiting a planet on a circular orbit of radius R and a speed v. The acceleration of the probe is a. Suppose rockets on the probe are fired causing the probe to move to another circular orbit of radius 0.5R and speed 2v. What is the magnitude of the probe’s acceleration in the new orbit?

Respuesta :

Answer:

acceleration in the new orbit is 8 time of acceleration of planet in old orbit

[tex]a_{new} = 8a.[/tex]

Explanation:

given data:

radius of orbit = R

Speed pf planet = v

new radius = 0.5R

new speed = 2v

we know that acce;ration is given as

[tex]a = \frac{v^{2}}{R},[/tex]

[tex]a_{new} =\frac{(2v)^{2}}{0.5R},[/tex]

           [tex]= \frac{4v^{2}}{0.5R}[/tex]

          [tex]= \frac{8 v^{2}}{R}[/tex]

[tex]a_{new} = 8a.[/tex]

acceleration in the new orbit is 8 time of acceleration of planet in old orbit

The magnitude of the probe’s acceleration in the new orbit is 8 times the magnitude of the probe’s acceleration in the old orbit.

What is centripetal acceleration?

The acceleration acted on the body moving in a closed circular path towards the center of the curve is known as centripetal acceleration. Due to centripetal acceleration, the body is able to move in a closed circular path.

[tex]a_C=\frac{V^{2} }{R}[/tex]

For old orbit

the radius of orbit = R

Speed pf planet = v

[tex]a_C=\frac{V^{2} }{R}[/tex]

For new orbits

new radius = 0.5R

new speed = 2v

[tex]a_C=\frac{(2V)^{2} }{0.5R}[/tex]³

[tex]a_C=\frac{8V^{2} }{R}[/tex]

Hence,

[tex]a_C_{new}=8a_C__{old}[/tex]

The magnitude of the probe’s acceleration in the new orbit is 8 times the magnitude of the probe’s acceleration in the old orbit.

To learn more about centripetal acceleration refers to the link

https://brainly.com/question/17689540