The probability that an appliance is currently being repaired is .5. If an apartment complex has 100 such appliances, what is the probability that at least 60 are currently being repaired? Use the normal approximation to the binomial.

Respuesta :

Answer:

.0287

Step-by-step explanation:

For the binomial distribution, μ = np = 100(.5) = 50

σ = √(np(1-p)) = √(100(.5)(1-.5)) = √(100(.5)(.5)) = √25 = 5

Then, P(X >= 60) = using the continuity correction, P(X >= 59.5)

= P(Z >= (59.5-50)/5)

=P(Z >= 1.9)

=1 - P(Z <= 1.9)

(use the table in your book; I will use normsdist and report the answer to 4 decimal places, as is typical)

1 - normsdist(1.9) = .0287

(Note: the exact solution may be found in Excel using  1-binomdist (59,100,.5,TRUE) = .0284; note how the above result is close)

The probability that no more than [tex]25[/tex] were victims of e-mail fraud is [tex]\fbox{0.0278}[/tex].

Further explanation:

Given:

The probability [tex]p[/tex] that an appliance is currently repaired is [tex]0.5[/tex].

The number of complex [tex]n[/tex] are [tex]100[/tex].

Calculation:

The [tex]\bar{X}[/tex] follow the Binomial distribution can be expressed as,

[tex]\bar{X}\sim \text{Binomial}(n,p)[/tex]

Use the normal approximation for [tex]\bar{X}[/tex] as

[tex]\bar{X}\sim \text{Normal}(np,np(1-p))[/tex]

The mean [tex]\mu[/tex] is [tex]\fbox{np}[/tex]

The standard deviation [tex]\sigma\text{ } \text{is} \text{ } \fbox{\begin{minispace}\\ \sqrt{np(1-p)}\end{minispace}}[/tex]

The value of [tex]\mu[/tex] can  be calculated as,

[tex]\mu=np\\ \mu= 100 \times0.5\\ \mu=50[/tex]

The value of [tex]\sigma[/tex] can be calculated as,

[tex]\sigma=\sqrt{100\times0.5\times(1-0.5)} \\\sigma=\sqrt{100\times0.5\times0.5}\\\sigma=\sqrt{25}\\\sigma={5}[/tex]

By Normal approximation \bar{X} also follow Normal distribution as,

[tex]\bar{X}\sim \text{Normal}(\mu,\sigma^{2} )[/tex]

Substitute [tex]50[/tex] for [tex]\mu[/tex] and [tex]25[/tex] for [tex]\sigma^{2}[/tex]

[tex]\bar{X}\sim\text {Normal}(50,25)[/tex]

The probability that at least [tex]60[/tex] are currently being repaired can  be calculated as,

[tex]\text{Probability}=P\left(\bar{X}>60)\right}\\\text{Probability}=P\left(\frac{{\bar{X}-\mu}}{\sigma}>\frac{{(60-0.5)-50}}{\sqrt{25} }\right)\\\text{Probability}=P\left(Z}>\frac{{59.5-50}}{5}}\right)\\\text{Probability}=P\left(Z}>\frac{9.5}{5}}\right)\\\text{Probability}=P(Z}>1.9})[/tex]

The Normal distribution is symmetric.

Therefore, the probability of greater than [tex]1.9[/tex] is equal to the probability of less than [tex]1.9 [/tex].

[tex]P(Z>1.9})=1-P(Z<1.9)\\P(Z>1.9})=1-0.9722\\P(Z>1.9})=0.0278[/tex]

Hence, the probability that no more than [tex]25[/tex] were victims of e-mail fraud is [tex]\fbox{0.0278}[/tex].

Learn More:

1. Learn more about angles https://brainly.com/question/1953744

2. Learn more about domain https://brainly.com/question/3852778

Answer Details:

Grade: College Statistics

Subject: Mathematics

Chapter: Probability and Statistics

Keywords:

Probability, Statistics, Appliance, Apartment complex, Binomial distribution, Normal distribution, Normal approximation, Central Limit Theorem, Z-table, Mean, Standard deviation, Symmetric.