Respuesta :
Answer : The concentration of [tex]S_2[/tex] at equilibrium will be, [tex]1.67\times 10^{-7}M[/tex]
Explanation : Given,
Equilibrium constant = [tex]1.67\times 10^{-7}[/tex]
Initial concentration of [tex]H_2S[/tex] = 0.100 M
Initial concentration of [tex]H_2[/tex] = 0.100 M
Initial concentration of [tex]S_2[/tex] = 0.00 M
The balanced equilibrium reaction is,
[tex]2H_2S(g)\rightleftharpoons 2H_2(g)+S_2(g)[/tex]
Initial conc. 0.1 0.1 0
At eqm. (0.1-2x) (0.1+2x) x
The expression of equilibrium constant for the reaction will be:
[tex]K_c=\frac{[H_2]^2[S_2]}{[H_2S]^2}[/tex]
Now put all the values in this expression, we get :
[tex]1.67\times 10^{-7}=\frac{(0.1+2x)^2\times (x)}{(0.1-2x)^2}[/tex]
By solving the term 'x' by quadratic equation, we get two value of 'x'.
[tex]x=1.67\times 10^{-7}M[/tex]
Concentration of [tex]S_2[/tex] at equilibrium = [tex]x=1.67\times 10^{-7}M[/tex]
Therefore, the concentration of [tex]S_2[/tex] at equilibrium will be, [tex]1.67\times 10^{-7}M[/tex]