Problem 9: Suppose you wanted to charge an initially uncharged 85 pF capacitor through a 75 MΩ resistor to 90.0% of its final voltage. Randomized Variables C = 85 pF R = 75 MΩ show answer No Attempt How much time (in s) would be required to do this?

Respuesta :

Answer:

[tex]t=14.678\times 10^{-3}s[/tex]

Explanation:

Given:

Capacitance, C = 85 pF = 85 × 10⁻¹² F

Resistance, R = 75 MΩ = 75×10⁶Ω

Charge in capacitor at any time 't' is given as:

[tex]Q=Q_o(1-e^{-\frac{t}{RC}})[/tex]

where,

Q₀ = Maximum charge = CE

E = Initial voltage

t = time

also, Q = CV

V= Final voltage = 90% of E = 0.9E

thus, we have

[tex]C\times 0.9E=CE(1-e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}})[/tex]

or

[tex]0.9=1-e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}}[/tex]

or

[tex]e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}}=1-0.9=0.1[/tex]

taking log both sides, we get

[tex]ln(e^{-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}})=ln(0.1)=ln(\frac{1}{10})[/tex]

or

[tex]-\frac{t}{75\times 10^6\ \times\ 85\times 10^{-12}}=-ln(10)[/tex]

or

[tex]t=75\times 10^6\ \times\ 85\times 10^{-12}\times ln{10}[/tex]

or

[tex]t=14.678\times 10^{-3}s[/tex]