contestada

A rock is thrown into a still pond and causes a circular ripple. If the radius of the ripple is increasing at 2 ft/sec, how fast is the area changing when the radius is 5 ft? 10 ft?

Respuesta :

Given:

Rate of increase in ripple radius, [tex]\frac{dr}{dt}[/tex] = 2 ft/sec

Solution:

Area of circle = [tex]\pi r^{2}[/tex]

Differentiating w.r.t 'r', we get:

[tex]\frac{dA}{dr}[/tex] =  2[tex]\pi r[/tex]

Rate of change in area is given by:

[tex]\frac{dA}{dt}[/tex] =  [tex]\frac{dA}{dr}[/tex]. [tex]\frac{dr}{dt}[/tex]

                                                                             (by chain rule)

[tex]\frac{dA}{dt}[/tex] = 2[tex]\pi r[/tex]  . [tex]\frac{dr}{dt}[/tex]

when radius, r = 5ft

[tex]\frac{dA}{dt}[/tex] = 2[tex]\pi 5[/tex]  . 2 = 20[tex]\pi[/tex]

Now,

when r = 10 ft

[tex]\frac{dA}{dt}[/tex] = 2[tex]\pi r[/tex]  . [tex]\frac{dr}{dt}[/tex]

[tex]\frac{dA}{dt}[/tex] = 2[tex]\pi 10[/tex]  . 2 = 40[tex]\pi[/tex]