Answer : The partial pressure of [tex]SO_3[/tex] is, 67.009 atm
Solution : Given,
Partial pressure of [tex]SO_2[/tex] at equilibrium = 30.6 atm
Partial pressure of [tex]O_2[/tex] at equilibrium = 13.9 atm
Equilibrium constant = [tex]K_p=0.345[/tex]
The given balanced equilibrium reaction is,
[tex]2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)[/tex]
The expression of [tex]K_p[/tex] will be,
[tex]K_p=\frac{(p_{SO_3})^2}{(p_{SO_2})^2\times (p_{O_2})}[/tex]
Now put all the values of partial pressure, we get
[tex]0.345=\frac{(p_{SO_3})^2}{(30.6)^2\times (13.9)}[/tex]
[tex]p_{SO_3}=67.009atm[/tex]
Therefore, the partial pressure of [tex]SO_3[/tex] is, 67.009 atm