Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the rules of radicals/ exponents

[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex]

[tex]a^{\frac{m}{n} }[/tex] ⇔ [tex]\sqrt[n]{a^{m} }[/tex]

Simplifying each term

7[tex]\sqrt{x^{3} }[/tex] = 7[tex]x^{\frac{3}{2} }[/tex]

x[tex]\sqrt{9x}[/tex]

= x × [tex]\sqrt{9}[/tex] × [tex]\sqrt{x}[/tex]

= x × 3 × [tex]x^{\frac{1}{2} }[/tex]

= 3 × [tex]x^{(1+\frac{1}{2}) }[/tex]

= 3[tex]x^{\frac{3}{2} }[/tex]

Subtracting the 2 simplified like terms, that is

7[tex]x^{\frac{3}{2} }[/tex] - 3[tex]x^{\frac{3}{2} }[/tex]

= 4[tex]x^{\frac{3}{2} }[/tex] ← return to radical form

= 4[tex]\sqrt{x^{3} }[/tex]