I need help please.

Answer:
see explanation
Step-by-step explanation:
Using the rules of radicals/ exponents
[tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex]
[tex]a^{\frac{m}{n} }[/tex] ⇔ [tex]\sqrt[n]{a^{m} }[/tex]
Simplifying each term
7[tex]\sqrt{x^{3} }[/tex] = 7[tex]x^{\frac{3}{2} }[/tex]
x[tex]\sqrt{9x}[/tex]
= x × [tex]\sqrt{9}[/tex] × [tex]\sqrt{x}[/tex]
= x × 3 × [tex]x^{\frac{1}{2} }[/tex]
= 3 × [tex]x^{(1+\frac{1}{2}) }[/tex]
= 3[tex]x^{\frac{3}{2} }[/tex]
Subtracting the 2 simplified like terms, that is
7[tex]x^{\frac{3}{2} }[/tex] - 3[tex]x^{\frac{3}{2} }[/tex]
= 4[tex]x^{\frac{3}{2} }[/tex] ← return to radical form
= 4[tex]\sqrt{x^{3} }[/tex]