Respuesta :

Answer:

[tex]x_{1} =-4+\sqrt{2} \\x_{2} =-4-\sqrt{2} \\[/tex]

Step-by-step explanation:

Using quadratic formula:

[tex]\frac{-b+-\sqrt{b^{2} -4*a*c} }{2*a}[/tex]

We will have 2 solutions.

x^2+8x+16=2

x^2+8x+14=0

a= 1    b=8   c= 14

[tex]x_{1}= \frac{-8+\sqrt{8^{2}-4*1*14} }{2*1} \\\\x_{2}= \frac{-8-\sqrt{8^{2}-4*1*14} }{2*1} \\[/tex]

We can write:

[tex]x_{1}= \frac{-8+\sqrt{{64}-56} }{2} \\\\x_{2}= \frac{-8-\sqrt{{64}-56} }{2} \\[/tex]

[tex]x_{1}= -4+\frac{\sqrt{{64}-56} }{2} \\\\x_{2}= -4-\frac{\sqrt{{64}-56} }{2} \\[/tex]

so, we have:

[tex]x_{1}= -4+\frac{\sqrt{{}8} }{2} \\\\x_{2}=-4-\frac{\sqrt{{}8} }{2} \\[/tex]

simplifying we have:

[tex]x_{1}= -4+\frac{\sqrt{{}2*4} }{2} \\\\x_{2}= -4-\frac{\sqrt{{}2*4} }{2} \\[/tex]

Finally:

[tex]x_{1}= -4+\sqrt{2} \\\\x_{2}= -4-\sqrt{2} \\[/tex]