Respuesta :

Answer:

[tex]4\sqrt{37} units[/tex] is the perimeter of square ABCD.

Step-by-step explanation:

Coordinates of square ABCD:

A = (3,4), B = (2,-2), C = (-4-1) , D = (-3,5)

Distance formula: [tex](x_1,y_1),(x_2,y_2)[/tex]

[tex]d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]

Distance of AB: A = (3,4), B = (2,-2)

[tex]AB=\sqrt{(2-3)^2+(-2-4)^2}[/tex]

[tex]AB=\sqrt{(-1)^2+(-6)^2}=\sqrt{37} units[/tex]

Given that the ABCD is square, then:

AB = BC = CD = DA

Perimeter of the square ABC = AB +BC + CD + DA

[tex] AB+ AB+ AB+ AB= 4AB=4\sqrt{37} units[/tex]

[tex]4\sqrt{37} units[/tex] is the perimeter of square ABCD.