Respuesta :

wnjmay

Answer:

√(3)/2

Step-by-step explanation:

To find the quotient, rationalize the denominator by multiplying both the numerator and denominator by √(6)

3√(8)*√(6)    =     3√(48)

4√(6)*√(6)              24

Next, simplify the top radical

12√(3) =  √(3)/2, This is the answer, it cannot be simplified any further.

 24  

For this case we must find the quotient of the following expression:

[tex]\frac {3 \sqrt {8}} {4 \sqrt {6}} =[/tex]

We combine [tex]\sqrt {6}[/tex] and [tex]\sqrt {8}[/tex] into a single radical:

[tex]\frac {3 \sqrt {\frac {8} {6}}} {4} =\\\frac {3 \sqrt {\frac {4} {3}}} {4} =\\\frac {3 \frac {\sqrt {4}} {\sqrt {3}}} {4} =\\\frac {3 \frac {2} {\sqrt {3}} * \frac {\sqrt {3}} {\sqrt {3}}} {4} =[/tex]

[tex]\frac {3 * \frac {2 \sqrt {3}} {3}} {4} =\\\frac {\frac {6 \sqrt {3}} {3}} {4} =\\\frac {6 \sqrt {3}} {12} =\\\frac {\sqrt {3}} {2}[/tex]

Answer:

[tex]\frac {\sqrt {3}} {2}[/tex]