A series RLC circuit is connected to a 3.80 kHz oscillator with a peak voltage of 3.80 V. It consists of a 3.50 mH inductor, a 290. nF capacitor, and a 19.0 ? resistor. If ? = ?0, what is the instantaneous current i?

Respuesta :

Answer:

instantaneous current will be 59.52 mA

Explanation:

Given data

oscillation F = 3.80 kHz = 3.80 ×[tex]10^{3}[/tex] Hz

voltage V = 3.80 V

inductance L = 3.50 mH  = 3.50 ×[tex]10^{-3}[/tex] H

capacitor C =  290. nF = 290 ×[tex]10^{-9}[/tex] F

resistor R = 19.0 Ω

to find out

the instantaneous current

solution

we know that current I = V / Z

here Z = √(R²+(xl - xc)²)

so first we find xl = 2π×f×L = 2π×3800×3.50 ×[tex]10^{-3}[/tex]

xl = 83.52 ohm

and xc = 1 / 2π×f×C = 1 / 2π×3800× 290 ×[tex]10^{-9}[/tex]

xc = 144.497 ohm

so Z = √(R²+(xl - xc)²)

Z = √(19²+(83.52 - 144.497)²)

Z = 63.84

so that current will be  V / Z

current = 3.80 / 63.84

current = 0.5952 A

so instantaneous current will be 59.52 mA