Answer:
A) (-1,1) -----> The ordered pair is on the interior of the circle
B) (-2,1) -----> The ordered pair is on the circumference of the circle
C) (4,-8) -----> The ordered pair is on the exterior of the circle
Step-by-step explanation:
we know that
In this problem
1) If a ordered pair satisfy the equation [tex]x^{2} +y^{2}=5[/tex]
then
The ordered pair is on the circumference of the circle
2)If a ordered pair satisfy the inequality [tex]x^{2} +y^{2}>5[/tex]
then
The ordered pair is on the exterior of the circle
3)If a ordered pair satisfy the inequality [tex]x^{2} +y^{2}< 5[/tex]
then
The ordered pair is on the interior of the circle
Verify each case
case A) (-1,1)
For x=-1, y=1
[tex]-1^{2} +1^{2}=2[/tex]
so
[tex]x^{2} +y^{2}< 5[/tex]
therefore
A) (-1,1) -----> The ordered pair is on the interior of the circle
case B) (-2,1)
For x=-2, y=1
[tex]-2^{2} +1^{2}=5[/tex]
so
[tex]x^{2} +y^{2}= 5[/tex]
therefore
B) (-2,1) -----> The ordered pair is on the circumference of the circle
case C) (4,-8)
For x=4, y=-8
[tex]4^{2} + (-8)^{2}=80[/tex]
so
[tex]x^{2} +y^{2}> 5[/tex]
therefore
C) (4,-8) -----> The ordered pair is on the exterior of the circle