A raindrop of mass 0.5 * 10^-4 kg is falling verctically under the influence of gravity. The air drag on the raindrop is fdrag = 0.2 * 10^-5 v^2, where v is the speed of the raindrop. Find the displacement of the ain drop after 3 second, assume the raindrops starts from rest and use 10m/s^2 for the acceleration of gravity

Respuesta :

Answer:

The displacement of the air drop after 3 second is 18.27 m.

Explanation:

Mass of the rain drop = m = [tex]0.5\times 10^{-4} kg[/tex]

Weight of the rain drop = W

Duration of time = t = 3 seconds

[tex]W=m\times g[/tex]

Drag force on rain drop = [tex]D=0.2\times 10^{-5} v^2[/tex]

[tex]W=0.5\times 10^{-4} kg\time 10 m/s^2=0.5\times 10^{-3} N[/tex]

Motion of the rain drop:

[tex]F=m\times a[/tex]

Net force on the rain drop , F=  W - D

[tex]W-D=m\times a[/tex]

[tex]0.5\times 10^{-3} N-0.2\times 10^{-5} v^2=0.5\times 10^{-4} kg\times a[/tex]

[tex]0.5\times 10^{-3} kg m/s^2-0.2\times 10^{-5} v^2=0.5\times 10^{-4} kg\times \frac{v}{t}[/tex]

[tex]0.006v^2+0.05v-1.5=0[/tex]

v = 12.18 m/s

Initial velocity of the rain drop = u = 0 (since, it is starting from rest)

v=u+at (First equation of motion)

[tex]12.18 m/s=0m/s+a\times 3 s[/tex]

[tex]a=4.06 m/s^2[/tex]

[tex]s=ut+\frac{1}{2}at^2[/tex] (second equation of motion)

[tex]s=0\times 3s+\frac{1}{2}\times 4.06m/s^2\times (3 s)^2[/tex]

s = 18.27 m

The displacement of the air drop after 3 second is 18.27 m.