Answer:
1.0043
Explanation:
The formula for root mean square velocity is:
[tex]V_{rms}=\sqrt {\frac {3\times R\times T}{M}}[/tex]
Where,
R is the universal gas constant
T is the temperature
M is the molecular weight
Since, seen from the formula, root mean square velocity is inversely proportional to the square root of the molecular mass.
Thus, for two gases like [tex]^{235}U\ UF_6\ and\ ^{238}U\ UF_6[/tex].The expression is:
[tex]\frac {{V_{rms}}_{^{235}U\ UF_6}}{{V_{rms}}_{^{238}U\ UF_6}}=\sqrt {\frac {M_{^{238}U\ UF_6}}{M_{^{235}U\ UF_6}}}[/tex]
The molecular mass of [tex]^{235}U\ UF_6[/tex] is 349.0 g/mol
The molecular mass of [tex]^{238}U\ UF_6[/tex] is 352.0 g/mol
[tex]\frac {{V_{rms}}_{^{235}U\ UF_6}}{{V_{rms}}_{^{238}U\ UF_6}}=\sqrt {\frac {352}{349}}[/tex]
[tex]\frac {{V_{rms}}_{^{235}U\ UF_6}}{{V_{rms}}_{^{238}U\ UF_6}}=1.0043[/tex]