Respuesta :

Answer:

36 units

Step-by-step explanation:

From the diagram |UW|=|UV|+|VW|

We the expressions in terms of x to get:

[tex]9x - 9 =( 2x - 4 )+ (4x + 10)[/tex]

We group the similar terms to get:

[tex]9x - 2x - 4x = - 4 + 10 + 9[/tex]

[tex]3x = 15[/tex]

Divide both sides by 3

[tex] \frac{3x}{3} = \frac{15}{3} [/tex]

[tex]x = 5[/tex]

[tex] \implies \: |UW| = 9(5) - 9 = 45 - 9 = 36[/tex]

Answer:

The length of UW in units is:

                  36 units.

Step-by-step explanation:

It is given that:

Point V lies between points U and W on.

This means that the length of the line segment UW is equal to the sum of the length of the line segment UV and VW.

i.e.

   [tex]UW=UV+VW[/tex]

i.e.

    [tex]9x-9=2x-4+4x+10[/tex]

on combining the like terms in the right hand side of the expression we have:

          [tex]9x-9=2x+4x-4+10\\\\9x-9=6x+6[/tex]

Now on combining the like terms we have:

[tex]9x-6x=6+9\\\\i.e.\\\\3x=15\\\\x=\dfrac{15}{3}\\\\x=5[/tex]

Hence,

[tex]UW=9\times 5-9\\\\i.e.\\\\UW=9(5-1)\\\\i.e.\\\\UW=9\times 4\\\\UW=36[/tex]