Respuesta :

Space

Answer:

[tex]\displaystyle \lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x} = \frac{-1}{6}[/tex]

General Formulas and Concepts:

Calculus

Limits

Limit Rule [Constant]:                                                                                             [tex]\displaystyle \lim_{x \to c} b = b[/tex]

Limit Rule [Variable Direct Substitution]:                                                             [tex]\displaystyle \lim_{x \to c} x = c[/tex]

Limit Property [Addition/Subtraction]:                                                                   [tex]\displaystyle \lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)[/tex]

L'Hopital's Rule:                                                                                                     [tex]\displaystyle \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}[/tex]

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

We are given the following limit:

[tex]\displaystyle \lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x}[/tex]

Substitute in x = 9 using the limit rule:

[tex]\displaystyle \lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x} = \frac{\sqrt{9} - 3}{9 - 9}[/tex]

Evaluating this, we have an indeterminate form:

[tex]\displaystyle \lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x} = \frac{0}{0}[/tex]

Since we have an indeterminate form, let's use L'Hopital's Rule:

[tex]\displaystyle \lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x} = \lim_{x \to 9} \frac{\frac{1}{2\sqrt{x}}}{-1}[/tex]

Simplify:

[tex]\displaystyle \lim_{x \to 9} \frac{\sqrt{x} - 3}{9 - x} = \lim_{x \to 9} \frac{-1}{2\sqrt{x}}[/tex]

Substitute in x = 9 using the limit rule:

[tex]\displaystyle \lim_{x \to 9} \frac{-1}{2\sqrt{x}} = \frac{-1}{2\sqrt{9}}[/tex]

Evaluating this, we get:

[tex]\displaystyle \lim_{x \to 9} \frac{-1}{2\sqrt{x}} = \frac{-1}{6}[/tex]

And we have our answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit:  Limits