Solve the compound inequality,
2y-2>- 14
or
4y-4 ≥ 12
Write the solution in interval notation,
If there is no solution, enter Ø.

Respuesta :

gmany

Answer:

[tex]\large\boxed{y\in(-6,\ \infty)}[/tex]

Step-by-step explanation:

[tex](1)\\2y-2>-14\qquad\text{add 2 to both sides}\\\\2y-2+2>-14+2\\\\2y>-12\qquad\text{divide both sides by 2}\\\\\dfrac{2y}{2}>\dfrac{-12}{2}\\\\y>-6[/tex]

[tex](2)\\\\4y-4\geq12\qquad\text{add 4 to both sides}\\\\4y-4+4\geq12+4\\\\4y\geq16\qquad\text{divide both sides by 4}\\\\\dfrac{4y}{4}\geq\dfrac{16}{4}\\\\y\geq4[/tex]

[tex]\text{From (1) and (2) we have:}\\\\y>-6\ or\ y\geq4\to y\in(-6,\ \infty)\ \cup\ [4,\ \infty)\Rightarrow y\in(-6,\ \infty)[/tex]