Respuesta :
Answer:
BC = 30
Step-by-step explanation:
Look at the picture.
The equation:
[tex](2x+2)+(3x+6)=48[/tex] combine like terms
[tex](2x+3x)+(2+6)=48[/tex]
[tex]5x+8=48[/tex] subtract 8 from both sides
[tex]5x+8-8=48-8[/tex]
[tex]5x=40[/tex] divide both sides by 5
[tex]\dfrac{5x}{5}=\dfrac{40}{5}[/tex]
[tex]x=8[/tex]
[tex]BC=3x+6[/tex] - put x = 8:
[tex]BC=3(8)+6=24+6=30[/tex]

Answer:
[tex]BC=30[/tex]
Step-by-step explanation:
Given: Points A, B, and C are collinear. B lies between A and C. [tex]\text{AC}=48[/tex] , [tex]\text{AB}=2x+2[/tex], and [tex]\text{BC}=3x+6[/tex]
To find: BC
Solution: It is given that Points A, B, and C are collinear. As B is between A and C. So, we have
[tex]AB+BC=AC[/tex]
Here, [tex]\text{AC}=48[/tex] , [tex]\text{AB}=2x+2[/tex], and [tex]\text{BC}=3x+6[/tex]
So, [tex]2x+2+3x+6=48[/tex]
[tex]\implies5x+8=48[/tex]
[tex]\implies 5x=48-8[/tex]
[tex]\implies 5x=40[/tex]
[tex]\implies x=\frac{40}{5}[/tex]
[tex]\implies x=8[/tex]
Now, BC is [tex]3x+6[/tex]
On putting [tex]x=8[/tex] in [tex]3x+6[/tex]
[tex]BC=3(8)+6[/tex]
[tex]BC=24+6[/tex]
[tex]BC=30[/tex]
Hence, BC is 30.