Respuesta :

gmany

Answer:

BC = 30

Step-by-step explanation:

Look at the picture.

The equation:

[tex](2x+2)+(3x+6)=48[/tex]        combine like terms

[tex](2x+3x)+(2+6)=48[/tex]

[tex]5x+8=48[/tex]         subtract 8 from both sides

[tex]5x+8-8=48-8[/tex]

[tex]5x=40[/tex]           divide both sides by 5

[tex]\dfrac{5x}{5}=\dfrac{40}{5}[/tex]

[tex]x=8[/tex]

[tex]BC=3x+6[/tex] - put x = 8:

[tex]BC=3(8)+6=24+6=30[/tex]

Ver imagen gmany
aachen

Answer:

[tex]BC=30[/tex]

Step-by-step explanation:

Given: Points A, B, and C are collinear. B lies between A and C. [tex]\text{AC}=48[/tex] , [tex]\text{AB}=2x+2[/tex], and [tex]\text{BC}=3x+6[/tex]

To find: BC

Solution: It is given that Points A, B, and C are collinear. As B is between A and C. So, we have

[tex]AB+BC=AC[/tex]

Here, [tex]\text{AC}=48[/tex] , [tex]\text{AB}=2x+2[/tex], and [tex]\text{BC}=3x+6[/tex]

So, [tex]2x+2+3x+6=48[/tex]

[tex]\implies5x+8=48[/tex]

[tex]\implies 5x=48-8[/tex]

[tex]\implies 5x=40[/tex]

[tex]\implies x=\frac{40}{5}[/tex]

[tex]\implies x=8[/tex]

Now, BC is [tex]3x+6[/tex]

On putting [tex]x=8[/tex] in [tex]3x+6[/tex]

[tex]BC=3(8)+6[/tex]

[tex]BC=24+6[/tex]

[tex]BC=30[/tex]

Hence, BC is 30.