Respuesta :
Answer:
[tex]5\sqrt{2}[/tex]
Step-by-step explanation:
distance between two points:
[tex]d = \sqrt{(x_{2}-x_{1})^{2}+ (y_{2}-y_{1})^{2}}[/tex]
we have:
(-4, -6), (3, -7)
[tex]x_{1} = -4[/tex]
[tex]y_{1} =-6[/tex]
[tex]x_{2} = 3[/tex]
[tex]y_{2} =-7[/tex]
so we have:
[tex]d =\sqrt{(3-(-4))^{2}+ (-7-(-6))^{2}}\\\\d =\sqrt{(7)^{2}+ (-1)^{2}}\\\\d = \sqrt{49+ 1}\\\\d=\sqrt{50}\\\\d=5\sqrt{2}[/tex]
Answer:
[tex]5\sqrt{2}\approx 7.07[/tex] units.
Step-by-step explanation:
We have been given coordinates of two points. We are asked to find the distance between both points.
We will use distance formula to solve our given problem.
[tex]D=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
Let point [tex](-4,-6)=(x_1,y_1)[/tex] and point [tex](3,-7)=(x_2,y_2)[/tex].
[tex]D=\sqrt{(3-(-4))^2+(-7-(-6))^2}[/tex]
[tex]D=\sqrt{(3+4)^2+(-7+6)^2}[/tex]
[tex]D=\sqrt{(7)^2+(-1)^2}[/tex]
[tex]D=\sqrt{49+1}[/tex]
[tex]D=\sqrt{50}[/tex]
[tex]D=\sqrt{25*2}[/tex]
[tex]D=5\sqrt{2}[/tex]
[tex]D=7.07[/tex]
Therefore, the distance between both points is [tex]5\sqrt{2}\approx 7.07[/tex] units.