Answer: 1.53
Step-by-step explanation:
The given data : 4, 4, 4, 4, 6, 8
Number of data values : n= 6
The mean value of the given data will be :-
[tex]\overline{x}=\dfrac{\sum_{i=1}^{6}x_i}{n}\\\\\Rightarrow\ \overline{x}=\dfrac{30}{6}=5[/tex]
The formula to find standard deviation:_
[tex]\sqrt{\dfrac{\sum(x-\overline{x})^2}{n}][/tex]
Now,
[tex]\sum_{i=1}^{6}(x_i-\overline{x})^2=(-1)^2+(-1)^2+(-1)^2+(-1)^2+(1)^2+(3)^2\\\\=1+1+1+1+1+9=14[/tex]
The standard deviation will be :-
[tex]\sigma=\sqrt{\dfrac{14}{6}}\approx1.53[/tex]