Exactly 1.0 mol N2O4 is placed in an empty 1.0-L container and is allowed to reach equilibriumdescribed by the equation N2O4(g)↔ 2NO2(g). If at equilibrium theN2O4is 40.% dissociated, what is the value of the equilibriumconstant (in units of moles per liter) for the reaction under theseconditions?
a. 0.20
b. 0.84
c. 1.1
d. 1.5
e. 2.0

Respuesta :

Answer : The correct option is, (C) 1.1

Solution :  Given,

Initial moles of [tex]N_2O_4[/tex] = 1.0 mole

Initial volume of solution = 1.0 L

First we have to calculate the concentration [tex]N_2O_4[/tex].

[tex]\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}[/tex]

[tex]\text{Concentration of }N_2O_4=\frac{1.0moles}{1.0L}=1.0M[/tex]

The given equilibrium reaction is,

                           [tex]N_2O_4(g)\rightleftharpoons 2NO_2(g)[/tex]

Initially                      c                 0

At equilibrium   [tex](c-c\alpha)[/tex]           [tex]2c\alpha[/tex]

The expression of [tex]K_c[/tex] will be,

[tex]K_c=\frac{[NO_2]^2}{[N_2O_4]}[/tex]

[tex]K_c=\frac{(2c\alpha)^2}{(c-c\alpha)}[/tex]

where,

[tex]\alpha[/tex] = degree of dissociation = 40 % = 0.4

Now put all the given values in the above expression, we get:

[tex]K_c=\frac{(2c\alpha)^2}{(c-c\alpha)}[/tex]

[tex]K_c=\frac{(2\times 1\times 0.4)^2}{(1-1\times 0.4)}[/tex]

[tex]K_c=1.066\aprrox 1.1[/tex]

Therefore, the value of equilibrium constant for this reaction is, 1.1