By how much does the volume of an aluminum cube 4.00 cm on an edge increase when the cube is heated from 19.0°C to 67.0°C? The linear expansion coefficient of aluminum is 23.0 x 10^-6 /C°.

Respuesta :

Answer:

The volume of an aluminum cube is 0.212 cm³.

Explanation:

Given that,

Edge of cube = 4.00 cm

Initial temperature = 19.0°C

Final temperature = 67.0°C

linear expansion coefficient [tex]\alpha=23.0\times10^{-6}/C^{\circ}[/tex]

We need to calculate the volume expansion coefficient

Using formula of  volume expansion coefficient

[tex]\beta=3\alpha[/tex]

Put the value into the formula

[tex]\beta=3\times23.0\times10^{-6}[/tex]

[tex]\beta=0.000069=69\times10^{-6}/C^{\circ}[/tex]

We need to calculate the volume

[tex]V= a^3[/tex]

[tex]V=4^3[/tex]

[tex]V=64\ cm^3[/tex]

The change temperature of the cube is

[tex]\Delta T=T_{f}-T_{i}[/tex]

Put the value into the formula

[tex]\Delta T=67-19 = 48^{\circ}C[/tex]

We need to calculate the increases volume

Using formula of increases volume

[tex]\Delta V=V\beta\Delta T[/tex]

Put the value into the formula

[tex]\Delta V=64\times69\times10^{-6}\times48[/tex]

[tex]\Delta V=0.212\ cm^3[/tex]

Hence, The volume of an aluminum cube is 0.212 cm³.