A high-pass filter consists of a 1.66 μF capacitor in series with a 80.0 Ω resistor. The circuit is driven by an AC source with a peak voltage of 5.10 V . Part A
What is the crossover frequency fc?
Part B
What is VR when f=1/2fc?
Part C
What is VR when f =fc?
Part D
What is VR when f =2fc?

Respuesta :

Explanation:

Given that,

Capacitor [tex]C=1.66\ \mu F[/tex]

Resistor [tex]R=80.0\ \Omega[/tex]

Peak voltage = 5.10 V

(A). We need to calculate the crossover frequency

Using formula of frequency

[tex]f_{c}=\dfrac{1}{2\pi R C}[/tex]

Where, R = resistor

C = capacitor

Put the value into the formula

[tex]f_{c}=\dfrac{1}{2\pi\times80.0\times1.66\times10^{-6}}[/tex]

[tex]f_{c}=1198.45\ Hz[/tex]

(B). We need to calculate the [tex]V_{R}[/tex] when [tex]f = \dfrac{1}{2f_{c}}[/tex]

Using formula of  [tex]V_{R}[/tex]

[tex]V_{R}=V_{0}(\dfrac{R}{\sqrt{R^2+(\dfrac{1}{2\pi fC})^2}})[/tex]

Put the value into the formula

[tex]V_{R}=5.10\times(\dfrac{80.0}{\sqrt{(80.0)^2+(\dfrac{1}{2\pi\times\dfrac{1}{2}\times1198.45\times1.66\times10^{-6}})^2}})[/tex]

[tex]V_{R}=2.280\ Volt[/tex]

(C). We need to calculate the [tex]V_{R}[/tex] when [tex]f = f_{c}[/tex]

Using formula of  [tex]V_{R}[/tex]

[tex]V_{R}=5.10\times(\dfrac{80.0}{\sqrt{(80.0)^2+(\dfrac{1}{2\pi\times1198.45\times1.66\times10^{-6}})^2}})[/tex]

[tex]V_{R}=3.606\ Volt[/tex]

(D). We need to calculate the [tex]V_{R}[/tex] when [tex]f = 2f_{c}[/tex]

Using formula of  [tex]V_{R}[/tex]

[tex]V_{R}=5.10\times(\dfrac{80.0}{\sqrt{(80.0)^2+(\dfrac{1}{2\pi\times2\times1198.45\times1.66\times10^{-6}})^2}})[/tex]

[tex]V_{R}=4.561\ Volt[/tex]

Hence, This is the required solution.