In a double-slit experiment, the third-order maximum for light of wavelength 490 nm is located 15 mm from the central bright spot on a screen 1.6 m from the slits. Light of wavelength 670 nm is then projected through the same slits. How far from the central bright spot will the second-order maximum of this light be located?

Respuesta :

Answer:

The distance from the central bright spot are [tex]156.8\times10^{-3}\ mm[/tex] and [tex]142.9\times10^{-3}\ mm[/tex].

Explanation:

Given that,

Wavelength = 490 nm

Distance y= 15 mm

Length L=1.6 m

New wavelength = 670

We need to calculate the distance from the central bright spot

Using formula of distance

[tex]y= \dfrac{m\lambda L}{d}[/tex]

[tex]d=\dfrac{m\lambda L}{y}[/tex]

Put the value into the formula

[tex]d=\dfrac{3\times490\times10^{-9}\times1.6}{15\times10^{-3}}[/tex]

[tex]d=156.8\times10^{-6}\ m[/tex]

[tex]d=156.8\times10^{-3}\ mm[/tex]

We need to calculate the distance from the central bright spot for new wavelength

Using formula of distance

[tex]d=\dfrac{m\lambda L}{y}[/tex]

Put the value into the formula

[tex]d=\dfrac{2\times670\times10^{-9}\times1.6}{15\times10^{-3}}[/tex]

[tex]d=142.9\times10^{-6} m[/tex]

[tex]d=142.9\times10^{-3}\ mm[/tex]

Hence, The distance from the central bright spot are [tex]156.8\times10^{-3}\ mm[/tex] and [tex]142.9\times10^{-3}\ mm[/tex].