The velocity function v(t) (in meters per second) is given for a particle moving along a line. v(t) = 3 t - 10 text(, ) 0 <= t <= 5 (a) Find the displacement d1 traveled by the particle during the time interval given above. d1 = m (b) Find the total distance d2 traveled by the particle during the time interval given above. d2 = m

Respuesta :

Answer with Step-by-step explanation:

We are given that a velocity function v(t)=3t-10 for [tex]0\leq t\geq 5[/tex]

a.We have to find the displacement traveled by the particle during the time interval

Displacement =Velocity multiply by time

[tex]ds=v\cdot dt[/tex]

Displacement= S==[tex]\int_{5}^{0}(3t-10)dt[/tex]

S=[tex][3\frac{t^2}{2}-10t]^5_0[/tex]

S=[tex]\frac{3}{2}(5)^2-10(5)[/tex]

[tex]S=\frac{75}{2}-50=\frac{75-100}{2}[/tex]

[tex]S=-\frac{25}{2}=-12.5 meters[/tex]

b.We have to find the distance traveled by the particle during the time interval.

Substitute 3t-10=0

[tex]3t=10[/tex]

[tex]t=\frac{10}{3}[/tex]

Distance [tex]=d_2=\mid \int_{0}^{\frac{10}{3}}(3t-10)dt \mid +\mid \int_{\frac{10}{3}}^{5}(3t-10)dt \mid [/tex]

Distance=[tex]d_2=\mid [\frac{3}{2}t^2-10t}]^{\frac{10}{3}}_0 \mid +\mid [\frac{3}{2}t^2-10t]^5_{\frac{10}{3}}\mid [/tex]

Distance=[tex]d_2=\mid \frac{300}{18}-\frac{100}{3}\mid +\mid \frac{75}{2}-50-\frac{300}{18}+\frac{100}{3} \mid [/tex]

Distance=[tex]d_2=\mid \frac{-100}{6}\mid +\mid \frac{25}{6}\mid [/tex]

Distance=[tex]d_2=\frac{100}{6}+\frac{25}{6}[/tex]

Distance=[tex]d_2=\frac{100+25}{6}=\frac{125}{6}=20.83 meters[/tex]

Hence,the distance traveled by the particle during the time interval =20.83 meters