Answer:
[tex].351\mu C[/tex]
Explanation:
The side of the square = 25 cm =0.25 m
Area of square [tex]A=side^2=.25^2=0.00625m^2[/tex]
Separation between the plate d = 1.5 mm [tex]=1.5\times 10^{-3}m[/tex]
Relative permitivity k =6.8
The capacitance of the parallel plate capacitor is given by [tex]C=\frac{k\epsilon _0A}{d}=\frac{6.8\times 8.85\times 10^{-12}\times 0.00625}{1.5\times 10^{-3}}=2.5\times 10^{-9}F[/tex]
Voltage across the capacitor V =140 Volt
So charge Q = CV [tex]=2.5\times 10^{-9}\times 140=351\times 10^{-9}C=.351\mu C[/tex]