Answer:
20.02%
Step-by-step explanation:
Formula : [tex]NVP = 0 =-P_0 + \frac{P_1}{(1+IRR)} + \frac{P_2}{(1+IRR)^2} + . . . +\frac{P_n}{(1+IRR)^n}[/tex]
[tex]P_0 = 275000[/tex]
n = 1,2,3,4,5
Substitute the values in the formula :
[tex] 0 =-275000 + \frac{92000}{(1+IRR)} + \frac{92000}{(1+IRR)^2} + \frac{92000}{(1+IRR)^3}+\frac{92000}{(1+IRR)^4}+\frac{92000}{(1+IRR)^5}[/tex]
[tex] 275000 = \frac{92000}{(1+IRR)} + \frac{92000}{(1+IRR)^2} + \frac{92000}{(1+IRR)^3}+\frac{92000}{(1+IRR)^4}+\frac{92000}{(1+IRR)^5}[/tex]
Solving for IRR using calculator
IRR = 20.02
Hence the internal rate of return if the initial cost of the project is $275,000 is 20.02%