Find the range in nanometers of visible wavelengths of light in zircon (n = 1.923). (Assume visible light has wavelengths ranging from 380 nm to 760 nm in a vacuum.) shortest wavelength nm
longest wavelength nm

Respuesta :

Explanation:

It is given that,

Refractive index of zircon, n = 1.923

The wavelength of visible light ranging from 380 nm to 760 nm in a vacuum.

Wavelength 1, [tex]\lambda_1=380\ nm=380\times 10^{-9}\ m[/tex]

Wavelength 2, [tex]\lambda_2=760\ nm=760\times 10^{-9}\ m[/tex]

We need to find the shortest and longest wavelength. For shortest wavelength, [tex]\lambda_s=\dfrac{\lambda_1}{n}[/tex]

[tex]\lambda_s=\dfrac{380\times 10^{-9}}{1.923}=1.97\times 10^{-7}\ m[/tex]

For longest wavelength,  [tex]\lambda_l=\dfrac{\lambda_2}{n}[/tex]

[tex]\lambda_l=\dfrac{760\times 10^{-9}}{1.923}=3.95\times 10^{-7}\ m[/tex]

Hence, this is the required solution.