What is the energy absorbed in this endothermic nuclear reaction 14 7 N + 4 2 H e → 17 8 O + 1 1 H 7 14 N + 2 4 H e → 8 17 O + 1 1 H ? (The atomic mass of 14 N 14 N is 14.003074 u and that of 17 O 17 O is 16.999132 u)

Respuesta :

Answer: The energy absorbed in the given nuclear reaction is 1.2072 MeV.

Explanation:

For the given nuclear reaction:

[tex]_{7}^{14}\textrm{N}+_2^4\textrm{He}\rightarrow _{8}^{17}\textrm{O}+_{1}^{1}\textrm{H}[/tex]

We are given:

Mass of [tex]_{7}^{14}\textrm{N}[/tex] = 14.003074 u

Mass of [tex]_{8}^{17}\textrm{O}[/tex] = 16.999132 u

Mass of [tex]_{2}^{4}\textrm{He}[/tex] = 4.002602 u

Mass of [tex]_{1}^{1}\textrm{H}[/tex] = 1.00784 u u

To calculate the mass defect, we use the equation:

[tex]\Delta m=\text{Mass of reactants}-\text{Mass of products}[/tex]

Putting values in above equation, we get:

[tex]\Delta m=(m_N+m_{He})-(m_{O}+m_{H})\\\\\Delta m=(14.003074+4.002602)-(16.999132+1.00784)=-0.001296u[/tex]

To calculate the energy released, we use the equation:

[tex]E=\Delta mc^2\\E=(-0.001296u)\times c^2[/tex]

[tex]E=(-0.001296u)\times (931.5MeV)[/tex]    (Conversion factor:  [tex]1u=931.5MeV/c^2[/tex]  )

[tex]E=-1.2072MeV[/tex]    (negative sign indicates that energy is getting absorbed)

Hence, the energy absorbed in the given nuclear reaction is 1.2072 MeV.