A thin plate of steel contains a crack of length 2a =16 mm, which is subjected to a stress of 350 MPa. The yield stress of the material is 1000 MPa. The radius of the plastic region is approximately

Respuesta :

Answer:

0.49 mm

Explanation:

Given:

Crack length, 2a = 16 mm

or

a = 8 mm = 0.008 m

Applied stress, σ = 350 MPa

Yield stress, [tex]\sigma_y[/tex] = 1000 MPa

Now,

The stress intensity factor (K) is given as:

K = σ√(πa)

on substituting the values, we get

K = 350 × √(π × 0.008)

or

K = 55.48

also,

from Irwin's plastic zone correction factor

we have the formula

[tex]r_p=\frac{1}{2\pi}(\frac{K}{\sigma_y})^2[/tex]

where,

[tex]r_p[/tex] is the radius of the plastic zone

on substituting the respective values, we get

[tex]r_p=\frac{1}{2\pi}(\frac{55.48}{1000})^2[/tex]

or

[tex]r_p=[/tex] 0.00049 m

or

[tex]r_p=[/tex]0.49 mm