Compare the wavelength of a low-energy electron (???? = 0.01 c) to that of a gold atom. Use the De Broglie relation.

Respuesta :

Answer:

The wavelength of electron is 357256.63 times more than that of gold atom travelling at same speed.

Explanation:

The de-broglie wavelength is obtained using the formula

[tex]\lambda =\frac{h}{mv}[/tex]

For an electron we have

[tex]m=9.11\times 10^{-31}kg[/tex]

[tex]v=0.01c=0.01\times 3\times 10^{8}m/s=3\times 10^{6}m/s[/tex]

Using these values in the relation we get

[tex]\lambda _{electron)=\frac{6.62\times 10^{-34}}{9.11\times 10^{-31}\times 3\times 10^{6}}[/tex]

[tex]\therefore \lambda _{electron}=242.22\times 10^{-12}m[/tex]

For a gold atom we have

[tex]m=3.27\times 10^{-25}kg[/tex]

[tex]v=0.01c=0.01\times 3\times 10^{8}m/s=3\times 10^{6}m/s[/tex]

Using these values in the relation we get

[tex]\lambda _{gold)=\frac{6.62\times 10^{-34}}{3.27\times 10^{-25}\times 3\times 10^{6}}[/tex]

[tex]\therefore \lambda _{gold}=6.748\times 10^{-16}m[/tex]

thus we can write

[tex]\frac{\lambda _{electron}}{\lambda _{gold}}=\frac{242.22\times 10^{-12}}{6.748\times 10^{-16}}=357256.63[/tex]