Respuesta :

Answer: Third Option

[tex]x=1.469743[/tex]

Step-by-step explanation:

We have the following exponential equation

[tex]3^{x+1}=15[/tex]

We must solve the equation for the variable x

To clear the variable x apply the [tex]log_3[/tex] function on both sides of the equation

[tex]log_3(3^{x+1})=log_3(15)[/tex]

Simplifying we get the following:

[tex]x+1=log_3(15)[/tex]

To simplify the expression [tex]log_3 (15)[/tex] we apply the base change property

[tex]log_b(y)=\frac{log(y)}{log(b)}[/tex]

This means that:

[tex]log_3 (15)=\frac{log(15)}{log(3)}[/tex]

Then:

[tex]x+1=\frac{log(15)}{log(3)}[/tex]

[tex]x=\frac{log(15)}{log(3)}-1[/tex]

[tex]x=1.469743[/tex]