Respuesta :

Answer:

[tex]4\sqrt{5}[/tex]

Step-by-step explanation:

We are asked to write [tex]\sqrt{80}[/tex] in the simplest form.

We can write 80 as product of 16 and 5.  

[tex]\sqrt{80}=\sqrt{16\cdot 5}[/tex]

Using radical rule [tex]\sqrt{m\cdot n}=\sqrt{m}\cdot \sqrt{n}[/tex], we will get:

[tex]\sqrt{16\cdot 5}=\sqrt{16}\cdot \sqrt{5}[/tex]

[tex]\sqrt{16\cdot 5}=\sqrt{4^2}\cdot \sqrt{5}[/tex]

[tex]\sqrt{16\cdot 5}=4\sqrt{5}[/tex]

Therefore, the simplest form of the given expression would be [tex]4\sqrt{5}[/tex].

The simplest form any expression can be determined by performing the basic mathematical operations and by converting it into its standard form.

The simplest from of [tex]\sqrt{80}[/tex] is [tex]4\sqrt{5}[/tex].

Given information:

The given root is [tex]\sqrt{80}[/tex]

as, we know a the property of root is

[tex]\sqrt{a \times b}=\sqrt{a}\times\sqrt{b}[/tex]

Also the term 80 can be simplified as:

[tex]80=16\times5[/tex]

So, using above information we can write:

[tex]\sqrt{80}=\sqrt{16}.\sqrt{5} \\\sqrt{80}=\sqrt{4^2}. \sqrt{5}\\\sqrt{80}=4\sqrt{5}\\[/tex]

Hence, the simplest from of [tex]\sqrt{80}[/tex] is [tex]4\sqrt{5}[/tex].

For more information visit;

https://brainly.com/question/9111512