Respuesta :
[tex]\bf \cfrac{x+3}{4}=\cfrac{7}{8}\implies 8(x+3)=4(7)\implies 8x+24=28\implies 8x=4 \\\\\\ x=\cfrac{4}{8}\implies x=\cfrac{1}{2}[/tex]
Answer:
[tex]\large\boxed{x=\dfrac{1}{2}=0.5}[/tex]
Step-by-step explanation:
[tex]\dfrac{x+3}{4}=\dfrac{7}{8}\qquad\text{cross multiply}\\\\8(x+3)=(4)(7)\qquad\text{use the distributive property}\ a(b+c)=ab+ac\\\\8x+(8)(3)=28\\\\8x+24=28\qquad\text{subtract 24 from both sides}\\\\8x+24-24=28-24\\\\8x=4\qquad\text{divide both sides by 8}\\\\\dfrac{8x}{8}=\dfrac{4}{8}\\\\x=\dfrac{4:4}{8:4}\\\\x=\dfrac{1}{2}[/tex]