Respuesta :

Answer:

[tex]x = 2.666...[/tex]

or

[tex]x = - 2.666...[/tex]

Step-by-step explanation:

[tex]1 \frac{18}{7} + 4 {x}^{2} = 32[/tex]

[tex] \frac{25}{7} + 4 {x}^{2} = 32[/tex]

Subtract 25/7 from both sides:

[tex]4 {x}^{2} = 32 - \frac{25}{7} [/tex]

Subtract like terms:

[tex]4 {x}^{2} = \frac{199}{7} [/tex]

Divide both sides by 4:

[tex] {x}^{2} = \frac{199}{28} [/tex]

Hence,

[tex]x = \sqrt{ \frac{199}{28} } [/tex]

or

[tex]x = - \sqrt{ \frac{199}{28} } [/tex]

which is equal to 2.666... or -2.666...