Respuesta :

Answer: The voltage of the cell is 0.80 V.

Explanation:

The given cell is:

[tex]Cu(s)/Cu^{2+}(0.0257M)||Br_2(l)/2Br^-(0.392M)[/tex]

Half reactions for the given cell follows:

Oxidation half reaction: [tex]Cu(s)\rightarrow Cu^{2+}(0.0257M)+2e^-;E^o_{Cu^{2+}/Cu}=0.34V[/tex]

Reduction half reaction: [tex]Br_2(l)+2e^-\rightarrow 2Br^-(0.392M);E^o_{Br_2^/2Br-}=1.07V[/tex]

Net reaction: [tex]Cu(s)+Br_2(l)\rightarrow Cu^{2+}(0.0257M)+2Br^-(0.392M)[/tex]

Oxidation reaction occurs at anode and reduction reaction occurs at cathode.

To calculate the [tex]E^o_{cell}[/tex] of the reaction, we use the equation:

[tex]E^o_{cell}=E^o_{cathode}-E^o_{anode}[/tex]

Putting values in above equation, we get:

[tex]E^o_{cell}=1.07-(0.34)=0.73V[/tex]

To calculate the EMF of the cell, we use the Nernst equation, which is:

[tex]E_{cell}=E^o_{cell}-\frac{0.059}{n}\log ([Cu^{2+}]\times [Br^{-}]^2)[/tex]

where,

[tex]E_{cell}[/tex] = electrode potential of the cell = ?V

[tex]E^o_{cell}[/tex] = standard electrode potential of the cell = +0.73 V

n = number of electrons exchanged = 2

[tex][Cu^{2+}]=0.0257M[/tex]

[tex][Br^{-}]=0.392M[/tex]

Putting values in above equation, we get:

[tex]E_{cell}=0.73-\frac{0.059}{2}\times \log((0.0257)\times (0.392)^2)\\\\E_{cell}=0.80V[/tex]

Hence, the voltage of the cell is 0.80 V.