Respuesta :

Answer:

E:75

Step-by-step explanation:

[tex]\sqrt{21^{2} +72^{2}}[/tex]

Answer : The length of BC in the right triangle is, 75

Step-by-step explanation :

Using Pythagoras theorem in ΔBAC :

[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]

[tex](BC)^2=(AB)^2+(AC)^2[/tex]

Given:

Side AB = 21

Side AC = 72

Now put all the values in the above expression, we get the value of side BC.

[tex](BC)^2=(21)^2+(72)^2[/tex]

[tex]BC=\sqrt{(21)^2+(72)^2}[/tex]

[tex]BC=\sqrt{441+5184}[/tex]

[tex]BC=\sqrt{5625}[/tex]

[tex]BC=75[/tex]

Therefore, the length of BC in the right triangle is, 75