(a) The sum of all the x displacements is
[tex]20+bx-20-60=bx-60[/tex]
And we know that the final x position is -165. We deduce
[tex]bx-60=-165 \iff bx = -165+60=-105[/tex]
(b) Similarly, we sum all the y displacements and we impose them to be equal to the final displacement:
[tex]60-70+cy-70=59 \iff cy = 59-60+70+70 = 139[/tex]
(c) The magnitude of the overall displacement is given by
[tex]M = \sqrt{(-165)^2+(59)^2}=\sqrt{27225+3481}=\sqrt{30706}\approx 175.23[/tex]
(d) The angle is given by
[tex]\alpha = \arctan\left(\dfrac{59}{-165}\right)+\pi \approx 2.8 \text{ radians}[/tex]