Respuesta :

Answer:

The basic identity used is [tex]\bold{\sin ^{2} x+\cos ^{2} x=1}[/tex].

Solution:

In this problem some of the basic trigonometric identities are used to prove the given expression.

Let’s first take the LHS:

[tex]\Rightarrow \frac{\sin ^{2} x+\cos ^{2} x}{\cos x}[/tex]

Step one:

The sum of squares of Sine and Cosine is 1 which is:

[tex]\sin ^{2} x+\cos ^{2} x=1[/tex]

On substituting the above identity in the given expression, we get,

[tex]\Rightarrow \frac{\sin ^{2} x+\cos ^{2} x}{\cos x}=\frac{1}{\cos x} \rightarrow(1)[/tex]

Step two:

The reciprocal of cosine is secant which is:

[tex]\cos x=\frac{1}{\sec x}[/tex]

On substituting the above identity in equation (1), we get,

[tex]\Rightarrow \frac{\sin ^{2} x+\cos ^{2} x}{\cos x}=\sec x[/tex]

Thus, RHS is obtained.

Using the identity [tex]\sin ^{2} x+\cos ^{2} x=1[/tex], the given expression is verified.

Answer:

C

Step-by-step explanation:

Edge2021