Answer:
The acceleration of rocket B is -17.4 m/s².
Explanation:
Given that,
Initial velocity of rocket A = 6500 m/s
Final velocity of rocket B = 8700 m/s
Acceleration of rocket A = -13 m/s²
Displacement of both rocket is zero.
We need to calculate the time of rocket A
Using equation of motion
[tex]S_{A}=ut+\dfrac{1}{2}at^2[/tex]
Put the value into the formula
[tex]0=6500t+\dfrac{1}{2}\times(-13)\times t^2[/tex]
[tex]t=1000\ sec[/tex]
We need to calculate the acceleration of rocket B
Using equation of motion
[tex]S_{B}=ut+\dfrac{1}{2}at^2[/tex]
Put the value in the formula
[tex]0=8700\times1000+\dfrac{1}{2}\times a\times(1000)^2[/tex]
[tex]a=\dfrac{8700\times1000\times2}{(1000)^2}[/tex]
[tex]a=-17.4\ m/s^2[/tex]
Hence, The acceleration of rocket B is -17.4 m/s².