Answer:
[tex]V=1101cm^3[/tex]
Step-by-step explanation:
You are given this data:
[tex]\left[\begin{array}{cccccccccccc}long&0&1.5&3&4.5&6&7.5&9&10.5&12&13.5&15&&\\Area&0&18&59&78&93&105&118&128&63&38&0\end{array}\right][/tex]
First, calculate the x points by dividing the total length in 5:
[tex]\Delta{x}=\frac{l_f-l_0}{5}= \frac{15-0}{5}= 3[/tex]
x=3,6,9,12,15
Now you calculate the half point of the x axis intervals you just calculated:
[tex]x_h=1.5,4.5,7.5,10.5,13.5[/tex]
and find the function values of each of them (the Area for each cut):
A(1.5) = 18
A(4.5)=78
A(7.5)=105
A(10.5)=128
A(13.5)=38
Now you have formed the rectangles (see diagram below).
To calculate the volume, just use the next equation given by the midpoint rule:
[tex]V=\Delta{x}\sum_1^5{h_{rectangle}}\\V=3\sum(18, 78, 105, 128, 38)\\V=3(367)\\V=1101cm^3[/tex]