The ideal gas law is PV-nRT For R in units of 0.08206 Lit atm K-1.mol-1 determine the density of argon gas at 10.0 atm and 25.0°C in units of grams per cm3.

Respuesta :

Answer: The density of argon gas is [tex]0.0163g/cm^3[/tex]

Explanation:

To calculate the density of gas, we use the equation given by ideal gas equation:

[tex]PV=nRT[/tex]

Number of moles (n) can be written as: [tex]n=\frac{m}{M}[/tex]

where, m = given mass

M = molar mass

[tex]PV=\frac{m}{M}RT\\\\PM=\frac{m}{V}RT[/tex]

where,

[tex]\frac{m}{V}=d[/tex] which is known as density of the gas

The relation becomes:

[tex]PM=dRT[/tex]    .....(1)

We are given:

M = molar mass of argon = 39.95 g/mol

R = Gas constant = [tex]0.08206\text{ L atm }mol^{-1}K^{-1}[/tex]

T = temperature of the gas = [tex]25^oC=[25+273]K=298K[/tex]

P = pressure of the gas = 10.0 atm

Putting values in equation 1, we get:

[tex]10.0atm\times 39.95g/mol=d\times 0.08206\text{ L atm }mol^{-1}K^{-1}\times 298K\\\\d=16.3g/L[/tex]

Converting the calculated density into [tex]g/cm^3[/tex], we use the conversion factor:

[tex]1L=1000cm^3[/tex]

Converting the density into [tex]g/cm^3[/tex], we get:

[tex]\Rightarrow \frac{16.3g}{L}\times (\frac{1L}{1000cm^3})=0.0163g/cm^3[/tex]

Hence, the density of argon gas is [tex]0.0163g/cm^3[/tex]