Respuesta :
Answer:
The distance between Pluto and Charon is [tex]1.96 \times 10^7 m[/tex]
Explanation:
Force of gravitation between two objects [tex]F_g= \frac{G(M_1 M_2 )}{r^2}[/tex]
Where [tex]M_1 \ and \ M_2[/tex] are the masses of the objects,r is the distance between the objects
G is the universal gravitational constant=[tex]6.67 \times 10^-^1^1 m^3/kg s^2[/tex]
Here mass of pluto = [tex]1.3 \times 10^2^2 kg[/tex]
mass of charon = [tex]1.6 \times 10^2^1 kg[/tex]
Force of gravitation [tex]F_g=3.61 \times 10^1^8 N[/tex]
[tex]F_g= \frac {G(M_1 M_2 )}{r^2}[/tex]
[tex]r^2= \frac {G(M_1 M_2 )}{F_g }[/tex]
[tex]r= \sqrt \frac{(G(M_1 M_2 )}{F_g}[/tex]
[tex]=\sqrt \frac {((6.674\times 10^-^1^1) \times 1.3 \times 10^2^2 \times 1.6\times 10^2^1)}{(3.61 \times 10^1^8 )}[/tex]
=[tex]\sqrt \frac {(13.88*10^32)}{(3.61*10^18)}[/tex]
=[tex]1.96 \times10^7 m[/tex]